A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux

نویسندگان

  • Jinho Baik
  • Percy Deift
  • Eric M. Rains
چکیده

We obtain an identity between Fredholm determinants of two kinds of operators, one acting on functions on the unit circle and the other acting on functions on a subset of the integers. This identity is a generalization of an identity between a Toeplitz determinant and a Fredholm determinant that has appeared in the random permutation context. Using this identity, we prove, in particular, convergence of moments for arbitrary rows of a random Young diagram under Plancherel measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convergence of Moments for Random Young Tableaux and a Random Growth Model

In recent work of Baik, Deift and Rains convergence of moments was established for the limiting joint distribution of the lengths of the first k rows in random Young tableaux. The main difficulty was obtaining a good estimate for the tail of the distribution and this was accomplished through a highly nontrival Riemann-Hilbert analysis. Here we give a simpler derivation. The same method is used ...

متن کامل

A Note on Convergence of Moments for Random Young Tableaux

In recent work of Baik, Deift and Rains convergence of moments was established for the limiting joint distribution of the lengths of the first k rows in random Young tableaux. The main difficulty was obtaining a good estimate for the “tail” of the distribution and this was accomplished through a highly nontrival Riemann-Hilbert analysis. Here we give a simpler derivation. A conjecture is stated...

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

Truncations of a Random Unitary Matrix and Young Tableaux

Abstract. Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). We express the moments of the trace of any submatrix of U as a sum over partitions whose terms count certain standard and semistandard Young tableaux. Using this combinatorial interpretation, we obtain a simple closed form for the moments of an individual entry of a random unitary matrix and ...

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008